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Abstract 
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which is based on the multivariate empirical distribution. 
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1 Introduction 
 

In the history of approximation theory, univariate and multivariate Bernstein polynomials 
have played a central role since the beginning of the 20th century, see, e.g., [11] for a survey 
of Bernstein polynomials in one variable and [1], chapters 8.4 and 18, for a short treatment of 
Bernstein polynomials in several variables. They have not only been used to provide a 
constructive proof of the famous Weierstraß approximation theorem for continuous functions 
on compact intervals, including explicit estimates for the rate of convergence, but also for 
more advanced applications in functional analysis and computer aided design, such as Bézier 
curves and surfaces, see, e.g., [7], [15] and [16]. Here, shape preserving and local smoothness 
properties of Bernstein polynomials are of central interest, in particular w.r.t. engineering 
applications. (It might be interesting to note here that Donald Knuth has used Bézier curves 
for the design of TEX-fonts.) Applications of Bernstein polynomials for modelling stochastic 
dependence via so-called copulas have, in contrast, been considered much later.  
 

The use of copulas for modelling and simulation purposes, for instance in risk management, is 
of increasing importance, see, e.g., [3], section 5.3, or [9], chapter 5, and the references given 
there. Let us recall that a (d-dimensional) copula C is the cumulative distribution function 
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(cdf) of a random vector ( )1, , dU U=U   whose one-dimensional marginal distributions are 

uniform on the interval [ ]0,1 .  The following well-known theorem (see, e.g., [9], p. 186) deals 

with a key property of copulas. 
 

Theorem of Sklar.  Let F be the cdf of some random vector , i.e., ( )1, , dX XX =

( ) ( )1 1 1, , , ,dF x x P X x X x= £ £  d d  with marginal cdfs F  Then there exists a 

copula 

1, , .dF

[ ] [ ]: 0,1 0,1
d

C   such that ( ) ( ) ( )( )d 1, , dx x1 1, , x C F x= 1 , ,d dF xF x

1, , dF F
 for all  

If  are continuous, then C is uniquely determined. 

.Î 

Vice versa: For a copula C and univariate cdfs  the assignment 1, , dF F ( )1, , :dF x x =  

( ) ( )( )1 1 , , d dC F x F x

1, , .dF F
 defines the cdf F of some d-variate random vector with marginal cdfs 

 
 

Thus, the theorem of Sklar states that the cdf F of any d-variate random vector can be written 
in terms of its marginal distribution functions  and a suitable copula C which thus 

describes the dependence structure of the vector components. Such a decomposition is often 
very useful in practice; for an exemplary application in the context of Bernstein copulas see 
Example 4.2.The definition of this specific copula type, constructed by means of Bernstein 
polynomials, is given in section 2. 

1, , dF F

 

The discussion of potential copula models has so far mostly focussed on other types, i.e., 
either the elliptical case (e.g., the Gaussian and t-copula) or the Archimedean case (e.g., 
Gumbel-, Clayton-, and Frank-copulas). It seems that the true impact of Bernstein 
polynomials on copula models has been discovered only more recently, first in the framework 
of approximation theory (see, e.g., [8], [10], [11]) and later in particular in connection with 
applications in finance (see, e.g., [2], [5], [6], [13], [14]). Bernstein copulas possess several 
benefits compared to the traditional approaches: 
 

 Bernstein copulas allow for a very flexible, non-parametric and essentially non-symmetric 
description of dependence structures also in higher dimensions 

 Bernstein copulas approximate any other given copula arbitrarily well 
 Bernstein copula densities are given in an explicit form and can hence be easily used for 

Monte Carlo simulation studies. 
 

In this paper, we review the construction of Bernstein copulas through discrete random 
vectors with uniform margins (called discrete skeletons), and point out their connection to 
checkerboard copulas, as discussed, e.g., in [8], [10] and [11], and to Bernstein tensor product 
operators (cf. the proof of Theorem 2.2). The explicit representation of Bernstein copulas in 
terms of tensor product Bernstein operators with a discrete skeleton has, to our knowledge, 
not been stated in the related literature before. This approach, amongst others, opens a 
pragmatic and storage saving approach to fit the dependence structure of observed data to 
Bernstein copulas via rook copulas, a special subcase of checkerboard copulas based on the 
multivariate empirical distribution. The tensor product representation might also be helpful in 
further studies on global smoothness preservation for copula approximation since it allows a 
direct transfer of results from multivariate approximation theory (as formulated, e.g., in [4] 
and [12]) into the copula context. 
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2 Some simple mathematical facts on Bernstein polynomials and Bernstein 
copulas 
 

The assertions of the following lemma are well-known in the literature, but for convenience 
and better understanding in the copula context we give a short proof. 
 

Lemma 2.1. Let  Then we have ( , , ) (1 ) , 0 1, 0, , .k m km
B m k z z z z k m

k
-

æ ö÷ç ÷= - £ £ = Îç ÷ç ÷è ø
 

1 0, , 1.k m= -
1

0

( 1, , )m B m k z dz- =ò   for  

Further, 

[ ]( , , ) ( 1, 1, ) ( 1, ,
d

)B m k z m B m k z B m k z
dz

= - - - -   for  0, ,k m= 

 

with the convention  For the Bernstein operator  

defined by 

( 1, 1, ) ( 1, , ) 0B m z B m m z- - = - = . mB

0

: ( , , )
m

m
k

k
f z f B m k

m=

æ ö÷ç ÷ç ÷çè øåB z  for real-valued functions f on [ ]0,1  and [ ]0,1 ,z Î  

this yields 
1

0

( ) ( 1, , )
m

m m
k

d k
f z m f B m k z

dz m

-

=

æ ö÷ç= D -÷ç ÷çè øåB   

 

where 
1

( ) : ( )m f z f z f z
m

æ ö÷çD = + -÷ç ÷çè ø
 for ] denotes the forward difference operator. [0,1z Î

 

Proof:  
 

Let 
( ) ( )

( , ) :
( )

x y
x y

x y

G ⋅G
B =

G +
 for  denote the Beta function and G the Gamma function, 

as usual. Then 

,x y > 0

 
1

0

1 1 ( 1) (
( 1, , ) ( 1, )

( 1)

( 1)! !( 1)!
1.

!( 1)! !

m m k m
m B m k z dz m k m k m

k k m

m m k m k

k m k m

æ ö æ ö- - G + G -÷ ÷ç ç÷ ÷- = B + - =ç ç÷ ÷ç ç÷ ÷ G +è ø è ø

- - -
= ´ =

- -

ò
)k

 

 

Further, for 0  ,k m< <
 

[ ]

1 1

1 ( 1) ( 1) 1

( , , ) (1 ) ( ) (1 )

1 1
(1 ) (1 )

1

( 1, 1, ) ( 1, , )

k m k k m k

k m k k m

m md
B m k z k z z m k z z

k kdz

m m
m z z m z z

k k

m B m k z B m k z

- - - -

- - - -

æ ö æ ö÷ ÷ç ç÷ ÷= - - - -ç ç÷ ÷ç ç÷ ÷è ø è ø
æ ö æ ö- -÷ ÷ç ç÷ ÷= - - -ç ç÷ ÷ç ç÷ ÷-è ø è ø

= - - - -

k- -  

 

which, by the above convention, also holds for  The remaining statement follows 

easily from this.     
{ }0, .k mÎ
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Theorem 2.1 and Definition. For d  let Î ( )1, , dU U=U   be a random vector whose 

marginal component  follows a discrete uniform distribution over iU { }: 0,1, , 1i iT m= -  

with  Let further  , 1,im iÎ = , . d

}i

 

( ) {1
1

, , :
d

d i
i

p k k P U k
=

æ ö÷ç= = ÷ç ÷÷çè ø
   for all (  )1

1
, ,

d

d i
i

k k T
=

Î´ .

]Î

j-

Then  

( ) ( ) ( ) ( ) [
1

1

11

1 1 1
0 0 1

, , : , , 1, , , , , 0,1
d

d

mm d
d

B d d i i i i d
k k i

c u u p k k m B m k u u u
--

= = =

= -å å U      

 

defines the density of a d-dimensional copula , called Bernstein copula. We call  the 

Bernstein copula density induced by U. The vector U is also called the discrete skeleton of the 
Bernstein copula. 

BCU
BcU

 

Proof. For fixed 1  we obtain, according to Lemma 2.1 above, j d£ £
 

( ) ( ) ( ) ( )

( ) ( )

( )

1

1

1

1

1 1

1 1

1 111

1 1
0 0 10 0

11

1
0 0 1

1 1 1

1
0 0 0

, , , , 1, , 1, ,

, , 1, ,

, , 1,

d

d

d

d

j j j

j j j

mm d

B d j d i i i i j j j j
k k i

i j

mm d

d i i i i
k k i

i j

m m m

d i i
k k k

c u u du p k k m B m k u m B m k u du

p k k m B m k u

p k k m B m
- +

- +

--

= = =
¹

--

= = =
¹

- - -

= = =

= -

= -

æ ö÷ç ÷ç= -÷ç ÷ç ÷è ø

å å ò ò

å å 

å å å

U   

 

   ( )

{ } ( )

( )

1

1

1 11

1 1 1

\

11

0 0 1

1 1 11

0 0 0 0 1 1

1 1 1

,

1, ,

, , , , ,

d

d

j j d

j j d

j

mm d

i i
k k i

i j

m m mm d d

i i i i i i
k k k k i i

i j i j

B j j d

k u

P U k m B m k u

c u u u u

- +

- +

--

= = =
¹

- - --

= = = = = =
¹ ¹

- +

æ ö÷ç ÷ç ÷ç= = -÷ç ÷ç ÷÷ç ÷çè ø

=

å å 

å å å å 

U

 

 



 

for ( ) [ ] 1

1 1 1, , , , , 0,1
d

j j du u u u
-

- + Î  , where ( )\
1 1 1, , , , ,j

j j dU U U U- +=U   (note that for 

 the symbol reads 1, \ jUj = ( ), , ,dU2U  likewise for ).j d=

1d -

ru r£ £

 We thus obtain another 

Bernstein copula density, but of dimension  instead of d. Continuing integration 
according to the remaining variables except for the variable  for fixed 1  we end up 

with 

,d

 

( ) ( ) ( )

( ) ( )

1 1 1

1 1 1 1
00 0

1 1 1
1

0 0 0

, , 1, ,

11
1, , 1, , (1 ) 1

r

r

r r r

r

r r

m

d r r d r r r r r r
k

m m m
r m kk

r r r r r r r r r
k k kr

c u u du du du du P U k m B m k u

m
m B m k u B m k u u u

km

-

- +
=

- - -
- -

= = =

= = -

æ ö- ÷ç ÷= - = - = -ç ÷ç ÷è ø

åò ò

å å å

   

=

]

 

 
for all  which proves that the r-th marginal density of  is that of a continuous 

uniform distribution over 

[0,1ru Î BcU

[ ]0,1 ,  for every 1     .r d£ £
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Remark 2.1. Note that the line of proof above shows that if ( )1, , dU U=U   is a random 

vector with joint Bernstein copula density  as above, then also any partial random vector BcU

( )
1
, ,

niU U=V 

by 
 

i d ity

Î

)i

 with  and  possesses a Bernstein copula dens  

BcV  given 

n d< 11 ni£ < < £i 

( ) { } ( ) ( ) [ ]
1

1 1

1

11

0 0 1 1

, , 1, , , , , 0,1 .
ii n

n n

i in

mm n n
n

B i i i i i i i i i i
k k

c u u P U k m B m k u u u
--

= = = =

æ ö÷ç= = -÷ç ÷÷çè øå å V

     
 

      

 
 

Theorem 2.2. Under the conditions of Theorem 2.1, the Bernstein copula  induced by U is 

explicitly given by  
BCU

 

( ) ( ) { } (
1 1

1

1 1 1
0 0 1 10 0

, , : , , , ,
d d

d

x x mm d d

B d B d d i i i i
k k i i

C x x c u u du du P U k B m k x
= = = =

æ ö÷ç= = < ÷ç ÷÷çè øå å ò òU U       

 

for ( ) [ ]1, , 0,1 .
d

dx x Î   
 

Proof. Let F  denote the cdf of U, i.e.  for U ( ) {1
1

, ,
d

d i
i

F x x P U x
=

æ ö÷ç= £ ÷ç ÷÷çè øU   }i ( )1, , ,d
dx x Î   

and let ( )1, , dZ ZZ =  be given by 
1

: i
i

i

U
Z

m

+
=  for i  Then for the cdf of Z, we 

obtain  

1, , .d= 

 

{ } { } (1
1

1 11

, , 1 1, , 1
d d

d
i i i i d

i id

k k
F P U k P U k F k

m m = =

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷= £ - = < = -÷ ÷ç ç ç÷ ÷ ÷ç ÷ ÷ç ç÷ç è ø è øè ø
Z U   )k -

.

 

 

for (  By applying Lemma 2.1 consecutively d times, it follows that )1 1
, ,

d

d ii
k k T

=
Î´

 

( ) { } ( )

( ]{ } ( )

( )

1

1

1

1

1

1

11

1
0 0 1 1

11

0 0 1 1

1
1

, ,
0 11

, , 1, ,

1, 1, ,

, , 1, ,

d

d

d

d

d

d

d

mm d d

B d i i i i i i
k k i i

mm d d

i i i i i i
k k i i

m d
d

m m i i i i
k k id

c u u P U k m B m k u

P U k k m B m k u

k k
F m B m

m m

--

= = = =

--

= = = =

-

= = =

æ ö÷ç= = -÷ç ÷÷çè ø

æ ö÷ç= Î - ÷ç ÷÷çè ø

æ ö÷ç ÷= D -ç ÷ç ÷çè ø

å å 

å å 

å 

U

Z

 



 



 i

k u

-

( )

1

1

1

0

1
1

, ,
d

m

d

m m d
d

F u u
x x

-

¶
=

¶ ¶

å

Z 


B B

 

 

for ( ) [ ]1, , 0,1
d

du u Î

m

 where 
1 1, , d d

 is the tensor product of the forward 

difference operators 
1

D  from Lemma 2.1 and 
1 dm m  is the tensor product of 

the Bernstein operators 
1 dm mB  in the sense of [1], section 8.4 (i.e., roughly speaking, the 

operator with index i  is applied with the i-th of the d components as a variable and all other 

components remaining fixed). By integration, we thus obtain 

:m m m mD =D D 

dm mD

, , B
, , B B
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( ) ( ) ( )

( ) { } ( )

1

1

1 1

1 1

1 1 1 1

0 0

1

0 0 0 01 11

, , , , , ,

, , , , , ,

d

d

d d

d d

x x

B d d d m m d

m mm md d
d

i i i i i i i i
k k k ki i id

C x x c u u du du F x x

k k
F B m k x P U k B m

m m= = = == = =

= =

æ ö æ ö÷ ÷ç ç÷= = < ÷ç ç÷ ÷ç ÷ç÷ç è øè ø

ò ò

å å å å 

U
Z

Z

     

   

B B

1

d

k x

 

 

for ( ) [ ]1, , 0,1 ,
d

dx x Î  as stated.    
 

Remark 2.2. Note that the term 
1

1
, ,

1

, ,
d

d
m m

d

k k
F

m m

æ ö÷ç ÷D ç ÷ç ÷çè ø
Z   in the proof above corresponds – up 

to an index shift – to the d-th order difference of the d-increasing cdf , see, e.g., [17], 

chapter 6, or [8], Proposition 4.2.  For instance, for  we obtain 

,FZ

2,d =
 

1 2

1 2 1 2 1 2 1 2 1 2
,

1 2 1 2 1 2 1 2 1 2

1 1 1 1
, , , ,m m

k k k k k k k k k k
F F F F F

m m m m m m m m m m

æ ö æ ö æ ö æ ö æ+ + + +÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷D = - - +ç ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è
Z Z Z Z Z , .

ö÷÷÷÷ø
   

 
 

Remark 2.3. From a probabilistic point of view, in the light of Lemma 2.1, Bernstein copula 
densities ( )1, ,Bc u uU  d  can also be considered as mixtures of densities of random vectors 

( ) ( ) ( )( )
1 11 1 ,, , , ,

d dk m k mk m Y YY 

1jk +
,

j

, ,d dk m =  with independent components which follow beta 

distributions with parameters  and  and density jm k-

 

( ),

1 11 1
( ) (1 ) (1 )

( 1, )
j j j j j

k mj j

j k m k k m

Y j
j j j j

m
f z m z z z z

k k m k
- - - -

æ ö- ÷ç ÷= - = -ç ÷ç ÷ç B + -è ø
jk   

 
for  and 1, ,j d=  [ ]0,1 .z Î   Here U is the mixing random vector. From an algorithmic point 

of view, this representation is particularly useful for Monte Carlo simulations with Bernstein 
copulas. 
 
3  Bernstein and checkerboard copulas 
 

There is also a natural relationship between Bernstein and checkerboard copulas as discussed 
in [2], [5] and [6]. We refer to a slightly more general setup here. 
 
Theorem 3.1 and Definition. Under the assumptions of Theorem 2.1 define the intervals 

1, , 1

1
: ,

d

d
j j

k k j
j j

k k
I

m m=

æ ù+ç úç= ç úçè úû
´  for all possible choices (  Then the function  )1

1
, ,

d

d
i

k k T
=

Î´ .i

,

 

( )
1

, ,1

1

11

1
0 01

: ,
d

k kd

d

mmd

CB i d I
k ki

c m p k k
--

= ==

= å åU


  1  

 

is the density of a d-dimensional copula  called checkerboard copula (induced by U). 

Similarly as before, U is called the discrete skeleton of the checkerboard copula. Here  

denotes the indicator random variable of the set A, as usual. 

,CBCU

A1

 

 6



Proof. The assertion is a direct consequence of the fact  that a random vector 
( )1, , dW W=W   follows a checkerboard copula iff the conditional distribution of W given U 

fulfills the conditions 
 

( )( ) ( )
11 ,| , ,

dd kP k k I= =W U    ,k  for all (  )1 1
, , ,

d

d ii
k k T

=
Î´

 

where ( )
1 , , dk kI   denotes the continuous uniform distribution over  and  

1, , dk kI 
 

( )
11 ,, ,

dd kk k I=  ÎU W  , 1 1
, ,

d

d ii
k k

=
Î´k Tfor all ( )  

 

(i.e., U denotes in some sense the “coordinates” of W w.r.t. the grid induced by ).   
1, , dk kI 

 
 

Remark 3.1. The Bernstein copula induced by U can be regarded as a naturally smoothed 
version of the checkerboard copula induced by U, replacing the discontinuous indicator 
functions  
 
 

( ) ( )
, ,1

1 1
,1

, ,
k kd i i

i i

d

I d k k
i m m

u u uæ ù+ç úç= ç úçè û

=
1 1 i

]

  

by the continuous polynomials  
 

( ) ( ) [1
1

1, , , , , 0,1 .
d

d

i i i d
i

B m k u u u
=

- Î     

 

Theorem 3.2 (Approximation Theorem). Every copula C in d dimensions can be uniformly 

approximated by a sequence {  of checkerboard copulas with grid constants 

 if 

},
r

CB r r
C

Î

U



1, ,r rdm m Î  { }
1
min rkk d

m
£ £

 tends to infinity when r tends to infinity.  If C is the cdf of the 

random vector ( )d1, ,Z Z= Z  an admissible choice of the discrete skeletons  is 

given by the random vectors 

,r r ÎU 

( )rU1,r rU=  dU  with : 1rj rj jU m Zé ù= ⋅ -ê ú  for  where 1, ,j d=

{ }: minz ké ù = Îê ú  |z k£ z for  (rounding upwards). In this case, Î
 

( ) { } ( )
11 , ,

1 1

1
, ,

d

d d
j j

r d ri i j k
i j rj rj

k k
p k k P U k P Z P I

m m= =

æ öì üï ïæ ö + ÷ç ï ï÷ç ÷ç= = = < £ = Î÷ í ý÷ç ç÷ ÷÷ç ï ïçè ø ÷çè øï ïî þ
Z    k

.i

  

for all (  )1
1

, ,
d

d r
i

k k T
=

Î´
 

Proof.  The statement Theorem 3.2 as well as of the following Corollary 3.1 follows from a 
straight-forward extension of the two-dimensional case discussed in [8], section 5.   
 

 
Corollary 3.1. Every copula C in d dimensions can be uniformly approximated by a sequence 

{ },
r

B r r
C

Î

U



{
1
min rkk d

m
£ £

 of Bernstein copulas with discrete skeletons and grid constants  if 

 tends to infinity when r tends to infinity. The discrete skeletons may be chosen 

identically as in the checkerboard copula approximation.   

1, ,r rdm m Î 

}

 

 7



The practical importance of Theorem 3.2 lies in the fact that the Monte Carlo simulation of  –
especially high dimensional – copulas is generally difficult, while a simulation of 
checkerboard copulas is comparatively easy. 
 

4 Bernstein and rook copulas   
 

In most practical applications, e.g., when modeling financial portfolios containing different 
stocks and derivatives or insurance portfolios with different types of risk, the stochastic 
dependence structure of the various model variables is not explicitly known, see, e.g., [9], 
[13] and [14] for numerous examples. In such situations, assumptions on the class of 
corresponding (parametric) copula families are sometimes made on the basis of statistical 
tests. Alternatively, a non-parametric approach could be chosen, for instance identifying the 
discrete skeleton of a checkerboard or Bernstein copula directly via the observed data. A 
major problem here is to find a suitable contingency table since the marginal distributions 
must be discretely uniform, which means that a set of side conditions has to be fulfilled. Also, 

this approach becomes ineffective for higher dimensions d, since in general  real 

numbers have to be stored in order to describe the distribution of the discrete skeleton 
completely. Such problems are completely avoided if so-called rook copulas are used for 
modelling the discrete skeleton.  

1

d

i
i

m
=


 

A rook copula is a particular checkerboard copula with the same grid size in each dimension 
that distributes probability mass according to the placement of rooks on a checkerboard 
without mutual threatening. It can in general be constructed in d dimensions as follows. Let  
 

01 02 0, 1 0

11 12 1, 1 1

2,1 2,2 2, 1 2,

1,1 1,2 1, 1 1,

:

d d

d d

m m m d m d

m m m d m d

M

s s s s
s s s s

s s s s
s s s s

-

-

- - - - -

- - - - -

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û




    



 

denote a matrix of permutations in column vector notation, i.e. each ( )0 1 1,, , ,k k m ks s s -  is a 

permutation of the set { }: 0,1, , 1T m= -  for  A checkerboard copula C is a rook 

copula iff there holds 

1, , .k =  d

 

( ) { } ( ) ( )1 1 1
1

1
, , , , , , ,

d

m d i i d t t t d
i

p k k P U k k k
m

s s s
=

æ ö÷ç= = =  =÷ç ÷÷çè ø
   .t TÎ

0 1

0 1
M =

2 ,  for some  

 

The distribution of the discrete skeleton of a rook copula can thus be completely described by 
storing just  instead of  real numbers. m d⋅ dm
 

Example 4.1. The rook copula corresponding to the picture on the 
right is given by the matrix 
 

2 3 4 5 6 7
.

4 2 3 6 5 7

Té ù
ê ú
ê úë û
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In practical applications, in the case of continuous distributions, the permutation matrix 
pertaining to a rook copula can directly be extracted from the ranks of the observed random 

vectors according to the following procedure. Given a matrix ijxé ù= ë ûx  of data, where 

 is the i-th out of n independent d-dimensional observation row vectors and 1, ,i = 
1, ,

n
j d=   is the corresponding component (dimension) index: 

 

 For each j, calculate the rank ijr  of the observation ijx  among 1 , ,j njx x  for  1, , .i n= 

 Form the matrix ( )1ij
ù
úë û  of permutations for the empirical rook copula. :M ré= -ê

 

W.r.t. Monte Carlo simulations, it is extremely easy to generate samples that follow either a 
rook copula or a Bernstein copula with the same discrete skeleton. For simplicity, we explain 
the procedure by means of the following example only. 
 

Example 4.2. The following table contains some original data ( )1 2, ,i ix x   from an 

insurance portfolio of storm and flooding losses, observed over a period of 20 years, their 
ranks and the permutation matrix M. 

1, ,20i = 

 
i 1ix  2ix  

1ir  2ir  M 
1 0.468 0.966 4 9 3 8 
2 9.951 2.679 20 20 19 19 
3 0.866 0.897 8 4 7 3 
4 6.731 2.249 19 19 18 18 
5 1.421 0.956 13 8 12 9 
6 2.040 1.141 17 15 16 14 
7 2.967 1.707 18 18 17 17 
8 1.200 1.008 11 10 10 9 
9 0.426 1.065 3 12 2 11 

10 1.946 1.162 15 16 14 15 
11 0.676 0.918 5 6 4 5 
12 1.184 1.336 10 17 9 16 
13 0.960 0.933 9 7 8 6 
14 1.972 1.077 16 13 15 12 
15 1.549 1.041 14 11 13 10 
16 0.819 0.899 6 5 5 4 
17 0.063 0.710 1 1 0 0 
18 1.280 1.118 12 14 11 13 
19 0.824 0.894 7 3 6 2 
20 0.227 0.837 2 2 1 1 

 
 

Scatterplot of observed risks 1ix  and 2ix  

(in million euros) 

 

In the first step, we draw a pair ( )1 2,i is s  out of M with equal probability 
1 1

20m
=  w.r.t. the 

index { } { }0, , 1 0, ,i mÎ - = 19 .  In the second step, we either draw a sample 

( )1 2,Z Z=Z from a continuous uniform distribution over the rectangle 

1 2,i i
Is s

1 1 2 21
,i i i i

m m m

s s s sé ù é+
ê ú ê= ´
ê ú êë û ë

1
,

m

ù+
ú
úû

 for the rook copula, or a sample ( )1 2,Z Z=Z  with 

independent components where jZ  follows a beta distribution with parameters  and  

 

1ijs +

,ijm s- { }1,2 .j Î  
 

 9



      
 

5000 simulated random vectors  
following the rook copula (left)  and the Bernstein copula (right) 

 

A generalization of the procedure to arbitrary dimensions, replacing the rectangle  by a 

general cube, is obvious.   
1 2,i i

Is s

 

Note that according to a fundamental theorem in statistics, the empirical distribution function 
of a multivariate observation converges uniformly to the true cdf when the sample size 
increases. Likewise, the empirical copula based on the extracted marginal ranks converges 
uniformly to the true underlying copula. This implies that with an increasing number of 
observed data, the rook copulas as well as the Bernstein copulas with the discrete skeletons 
derived from the marginal ranks converge to the true underlying copula as well, since in both 
cases the grid constant m corresponds to the sample size. 
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