Journal of Information Systems Education, Vol. 21(4)

Teaching Case

Teaching Software Componentization:
A Bar Chart Java Bean

Michel Mitri
CIS & MS Department
James Madison University
Harrisonburg, VA 22801 USA
mitrimx@jmu.edu

ABSTRACT

In the current object-oriented paradigm, software construction increasingly involves creating and utilizing software
components. These components can serve a variety of functions, from common algorithmic processes to database connectivity
to graphical interfaces. The advantage of component architectures is that programmers can use pre-existing components to
simplify their programming tasks and to facilitate rapid application development. In the Java world, components are
implemented as Java Beans, which can be used in most Integrated Development Environments (IDEs) to construct user
interface designs via form builders. This article describes a programming assignment for an advanced information systems
course in which students create a graphical software component. In addition, the article discusses potential follow-up
assignments in which the component can be used in useful software applications.

Keywords: Software components, JavaBeans, Graphics Programming, Event-Handling, Data Aggregation, Drill-Down.

1. INTRODUCTION

Modern-day software applications can be characterized as
assemblages of portable software components. This has led
to a new approach to software development, often called
Component Based Development (CBD), which facilitates
software reuse (Ratchivadranand and Rothenberger, 2003).
The CBD approach is gradually working its way into
programming curricula (Cunningham et al, 2 003; Howe et
al, 2004).

Most college-level computer programming classes in
information systems curricula go into a fair amount of detail
in building applications that use software components. A
classic example would be in most Java courses, where
students learn how to use many of the Swing GUI
components (http://java.sun.com/javase/6/docs/api/javax/
swing/package-summary.html). Similarly, Microsoft’s .NET
API includes a broad collection of graphical components
(called “controls” in the Microsoft world), for both Windows
and Web applications, that are covered in programming
courses using the .NET platform (http://msdn.
microsoft.com/en-us/library/ms229335(v=VS.90).aspx).
Learning how to use these components involves
instantiation, placement in forms and containers, viewing
and manipulating their properties, invoking behaviors via
method calls, and responding to events generated by the

361

components. These are the skill that most students get
comprehensive training and practice in during their
programming coursework. It is far less common to teach
students how to actually build these components, which
would involve designing and implementing the very
properties, behaviors, and event-generation algorithms that
would be necessary to deliver to applications using the
components. In other words, seeing “the other side of the
coin” is a gap in the knowledge of most students graduating
from a CIS curriculum.

This paper presents a sequence of two programming
assignments that cover both sides of the coin, the component
construction and the component usage. The first involves
creation of a component that implements a bar chart,
utilizing arrays of numbers and strings for the bar values and
labels. In this assignment, students perform graphics
programming, and implement listener registration and
notification algorithms. The second assignment involves use
of the bar chart component in an application that performs
grouped aggregate queries on a database, generates the bar
chart based on this aggregation and grouping, and responds
to a user’s click on a particular bar in order to obtain detailed
information about the corresponding group.

In the following sections, | will discuss the pedagogical
benefits of the component-building-and-use approach,
describe the bar chart component in general, and outline the

Journal of Information Systems Education, Vol. 21(4)

programming tasks involved in creating and using the bar
chart.

2. PEDAGOGICAL BENEFITS OF IMPLEMENTING
AND USING JAVA-BASED GRAPHICAL SOFTWARE
COMPONENTS

In the Java world, graphical software components are
implemented as JavaBeans (Liang 2009 pp1049-1064). For
example, all of the Swing GUI classes in the Java Class
Library are JavaBeans. JavaBeans are useful for rapid
application development (RAD), because they provide
developers with ready-made modular functional units that
can typically be embedded in Java applications through an
Integrated Development Environment’s (IDE) form-building
design tools. NetBeans, Eclipse, and JBuilder are examples
of Java IDE’s that include form-builders enabling JavaBean
drag-and-drop design features.

JavaBeans are specially configured Java classes that
involve the following characteristics: (1) they must be
implemented as public classes; (2) they must include default
constructors (i.e. constructors that take no arguments; (3)
they must be serializable (i.e. implement the Serializable
interface); (4) they will typically include properties involving
private member variables with associated accessor and
mutator methods; and (5) they will typically generate events,
and therefore include associated Listener interfaces and

E Barchart Tester

public registration and deregistration facilities (Liang 2009,
p1050).

From a pedagogical perspective, learning how to develop
and use JavaBeans (or bean-like components) offers students
important software development skills in object-orientation,
event-driven software architectures, encapsulation and data
hiding, and object persistence via serialization. If the
JavaBean implementations require graphical programming
techniques, this provides additional pedagogical benefits
(Wolz and Kaufmann 1999), particularly related to
geometric analysis and mapping data inputs to visualization
outputs. Students involved in graphical programming must
learn about the XY-coordinate system, RGB color control,
and the mathematical formulas that are required to translate
numerical data into visualization results.

3. ADESCRIPTION OF THE BAR CHART
COMPONENT AND ITS USE

The bar chart JavaBean component discussed in this paper is
a graphical component that can be embedded in Java
applications, either through instantiation in the code, or by
dragging onto a form in an IDE’s form builder. The
BarChartPanel class is a subclass of JPanel, so this is a GUI
component that can be placed into another Java Swing
container, such as a frame, an applet, or another panel. The
component requires two arrays for input data: an array of

CEX

Add Bar | [45.00 | [Chemy Modify Bar | Refresh Bar Chart |
45.00
17.00
13.00
Mike Cheryl Brendan Joshua Eric

pBar 1 selected

Figure 1: A BarChartPanel used by a tester application.

362

Journal of Information Systems Education, Vol. 21(4)

double (floating point) values and an array of strings (text).
The strings form the labels of the bars, and the numeric
values will be used to determine bar heights. For example,
consider the chart below:

In figure 1, the boxed in area is a BarChartPanel in the
center of the overall frame. The frame also contains buttons
and text fields, but these are not part of the component, they
are specific to the tester application. The component itself
contains only the bars and labels shown. Bars are indexed
(according to the indexes of their associated data arrays).
The selected bar is given a “special” color; in the above
implementation the selected bar is white.

If the user clicks on a bar, the BarChartPanel recognizes
this, and sends an “event” to the application. It does this
using Java’s event-processing convention in which objects
implement and are registered as listeners (in this case
BarChartListeners), and the BarChartPanel itself calls an
event handler method of these registered objects. More
details about Java’s event-handling approach, its
implementation in the BarChartPanel, and its pedagogical
ramifications will be discussed in a later section.

Assuming that the application is a “listener” for the
event, then the application can respond and make use of
information from the bar chart when the user clicks a bar.
Specifically, the BarChartPanel will send to the application
the index number of the bar that was clicked. This is shown

Havigation | Statistics ;
i ————

in the bottom of screenshot in Figure 1. Then, the application
can retrieve the value and label at that bar position. In this
case (the tester program shown above), these are displayed in
the text fields at the top of the window. Also, the selected bar
will be given a designated “special” color (in this case
white). Finally, if the user drags a bar up or down, its
associated data values will adjust accordingly, and the bars
will be adjusted in real time to reflect these changes. Thus,
applications can use this component to manipulate data as
well as to display it.

This brings up a point about the pedagogical benefits that
can be derived from using the bar chart component for data
visualization. Bar charts as data visualizations tie in very
well with database query skills. In particular, aggregate SQL
queries involving sums or averages and including grouping
clauses are excellent data sources for the BarChartPanel.
After all, data visualization in general typically involves
some sort of summarization or aggregation. If a data
visualization also allows interactivity, for example in
response to bar clicks, this opens the door for an application
to offer drill-down features. In short, the BarChartPanel,
once developed, can be useful for a wide variety of purposes.
Once students build the BarChartPanel itself, they can then
develop applications that make use of this component.

For example, consider this potential follow-up
programming assignment. It is an Employee Processing

First Hame 'Cner,d
M A

Employees working on project Accounts Receivable
Angela Powers

Joe Slacker

James Smith

[Lox]

Fiaure 2: An Emplovee Processina anplication utilizina the BarChartPanel component.

363

Journal of Information Systems Education, Vol. 21(4)

application, shown in Figure 2. This application interfaces to
an employee database consisting of employees, departments,
job types, and projects (using JDBC middleware). The
database includes a one-to-many relationship between
departments and employees and also a many-to-many
relationship between employees and projects.

In addition to the standard database processing
functions, such as scrolling forward and backward through
the employee table, displaying data from these queries,
identifying projects that an employee is working on, and
supporting updates to the database, this application performs
aggregate join queries in order to obtain statistics from the
database. These aggregate queries return result sets of (a)
employee counts per department (requiring a two-table joint
combined with grouped aggregation), and (b) employee
counts per project (requiring a three-table joint combined
with grouped aggregation). The application then instantiates
BarChartPanel objects to display the information, such as
shown above. The application also listens for events
generated by the BarChartPanel, so that when a user clicks
on a bar representing a department or a project in the chart,
the application retrieves the selected bar’s label and uses it in
a query to obtain and display drill-down detail about the
specific employees in that project or department. This is a
classic example of using the BarChartPanel component both
for display of summary information and for user-requested
drill-down to more specific details.

This component has also been used for several years by
CIS majors working on the capstone project in an advanced

core CIS course, a project that involves designing and
implementing a database, performing the interviewing tasks,
use case modeling and user interface design for an
application, and ultimately implementation and
documentation of a finished software product. Details of this
capstone project can be seen in (Mitri 2008). Students will
typically create the BarChartPanel as individual assignments
early in the semester, and then use it for a variety of purposes
in the applications they build during the capstone project.

4. PROGRAMMING TASKS FOR IMPLEMENTING
THE BAR CHART COMPONENT

Figure 3 shows a UML diagram for a typical implementation
of the BarChartPanel class and the BarChartListener
interface. | said earlier that the BarChartPanel is
implemented as a JavaBean. Actually, in the implementation
I use for my programming assignments, the BarChartPanel
does not satisfy all the requirements for a component to be a
true JavaBean. In particular, it does not actually have an
associated Event class. Strictly speaking, the BarChartPanel
does not generate an Event (i.e. an instance of a subclass of
Java’s Event class). All it really gives is a number, which is
the index value of the bar that was clicked or dragged. This
was both a pedagogical choice and a design choice.
Pedagogically, event objects aren’t really necessary for
teaching about the mechanism of event listening, and it saves
teaching time to leave them out. From a design perspective,
assuming that the only important piece of information is the

=<interface==>
-2 BarChartl istener

ARrbute s

Operations
public void barChanged(int bariNbr

. .gmyListe ners

o
= BarChartPanel

ARnbute s
private double barvalues[0..*]
private String barLabels[0 . *]
private Rectangle bars[0..*]
private int currentBar = -1
private int nbrBars =0
private int totListeners = 0

Opeations

public BarChartPanesl] 3

public int gethlbrBars])

public it getMaxBars()

public it getCurrertBary)

public void setCurrentBar(int value)

public double getBarWalue(int idx)

public void setBar“alue(int idx, doubkle values)
public String getBarLabel] int idx 3

public wvoid setBarLabel] int idx, String value)
public woid addBar(double val, String Ikl)

protected void paimComponent] Graphics g)

public wvoid set'aluesAndLabels({ double values[0..*], String labkels[0..*], int nlar 3

public boolean addBarChartListener{ BarZhartListensr b)

Figure 3: UML diagram for a typical BarChartPanel implementation.

364

Journal of Information Systems Education, Vol. 21(4)

Event object around it. It is always possible to enhance the
component and have it meet the all the standards for
“beandom”, but this is not necessary for making effective
use of it in an application or for learning the relevant
programming skills in a student project.

For a student assigned to create the BarChartPanel, the
programming task requires three fairly advanced skills: (1)
listener registration and notification, (2) geometric analysis
and data mapping, and (3) bar-selection and listener
notification based on mouse event processing. These skills
will be addressed in order.

4.1 Listener registration and notification

Event handling via the Java Swing GUI components operate
on what is commonly called a delegation model (Liang 2009,
pp485-490). The idea is that event-generating objects (such
as buttons or menu items or list boxes) send their events to
listener objects. The Java class library is full of many event-
generating classes, particularly in the javax.swing package.
In the Java library, listeners are interfaces, which are highly
abstracted class-like structures that typically consist of one
(or at most a few) abstract method, which will be called by
the event-generating objects. A Java application that is going
to respond to the user’s click on a button or selection of a list
item must implement the listener by overriding the abstract
method. The overridden method constitutes the behavior that
the listener object will perform in response to the button
click.

Students will typically have experience on the “listener”
side of the equation. The student’s application will
implement the listener or perhaps an anonymous inner class
will be used, but in either case, the student should understand
that the listener class needs to be created (implementing the
listener interface and overriding its abstract methods) and
that instances of this class must be registered to the event-
generated object. The classic example is the JButton class, its
associated ActionEvent and ActionListener. Any reasonably
trained GUI Java programming student will have done this
plenty of times.

What students typically will not have, however, is
experience with the other side of the coin. It is much less
frequent for Java students to design and create the event-
generating class itself. If students are going to do this, then
they need to incorporate the data structures and algorithms
required for (a) enabling registration of listeners and (b)
sending event messages to registered listeners. Both of these
are fairly simple programming tasks.

All that is required for enabling registration is to declare
a listener interface (typically three lines of code), instantiate
a collection of references to these listeners (such as an array
or vector), and create a registration method that, when called
from a listener that wants to register on the object, will
assign that listener’s reference into the array or vector. By
convention, this method is called addXXXListener, where
XXX is the name of the event. For example, JButtons and
other classes that generate ActionEvents have an
addActionListener method. The caller of the registration
method passes an instance of a class that implements the
listener, and the component adds this instance to the array or
vector. In this way, an event-generating object can keep track
of all its listeners, so that when the event is to be sent the

365

object knows where to send it. So, the BarChartPanel has an
associated BarChartListener interface, with an abstract
barChanged method. A BarChartPanel instance also has an
array (or it could be implemented as a Vector) to keep track
of the registered listener objects.

In order to send the event messages to the listeners, the
event-generating class itself needs to make use of lower-
level Java events. For example, the BarChartPanel responds
to mouse clicks and mouse drags on the panel’s surface. So,
the BarChartPanel implements MouseListener and
MouseMotionListener. In the BarChartPanel’s overridden
event-handling methods, there is code for determining which
bar is clicked (making use of geometric logic described
below) and sending that information to the listeners. Sending
the information is very simple; just loop through the array of
listeners and call each one’s barChanged method.

Pedagogically, this simple programming task brings
much to the table. First, it enriches the students’
understanding of event-handling by giving the student
experience on the other side of the coin, the event-generation
side. Second, this reinforces the students’ understanding and
experience with polymorphism, and exposes the students to
advanced object oriented features like abstract classes and
interfaces. Third, if the course includes rigorous memory
analysis training, this sort of problem is an excellent training
ground for doing memory analysis drills.

4.2 Geometric analysis and data mapping

Most data visualizations use shape and size to represent
numeric values, and in particular to provide a visual display
allowing users to intuitively compare these values. The size
ratios of the elements in a graph (e.g. bars) should mimic the
ratios of the numeric values they represent. Thus, a major
graphics programming task when drawing the bar chart is to
map data values into pixel ranges. In addition, bars should be
placed in specific locations and orientations in the bar chart.
The bottom of all bars should be on the same horizontal
position, and the tops of the bars will differ, simply because
the heights differ in the same ratios as the differing data
values they represent. Bars will have identical widths, and
the calculated width should be based on the total number of
visible bars and the overall width of the chart.

All of these considerations must be made in the context
of the standard graphical surface, represented by Java’s
Graphics class, a reference to which is received in the
paintComponent method. The paintComponent method is a
method of the Component class, of which BarChartPanel is a
descendent. So, the creator of the BarChartPanel class is
overriding this method (again, the student is exposed to
polymorphism). This graphical surface has an X-orientation
(horizontal), in which the X-value is 0 at the leftmost point
and increases to the right. And there is a Y-orientation
(vertical), in which the Y-value is 0 at the topmost point and
increases as you go down. In this context, students need to
write the necessary algorithm for determining the sizes and
locations of the bars based on the data values, for actually
drawing these bars onto the graphics surface, and for
maintaining the size and location information in memory for
the purpose of facilitating event-handling.

These positions and sizes can be stored in Rectangle
objects. Keeping track of each bar’s position and size will be

Journal of Information Systems Education, Vol. 21(4)

important for identifying which bar is clicked or dragged. So,
in addition to the data value array and the label array, there
should be a parallel array of Rectangles, one for each bar,
similar to the variable declarations shown below (note: the
Rectangle class is part of the Java API, found in the java.awt
package).

Mapping a data value to a bar height is based on the
following premise: the tallest bar, which represents the
largest data value, should take the full height of the chart. All
other bars will be sized proportionately. Therefore the first
step is to find the largest data value, which involves a simple
loop through the data array. Also, we need to determine the
chart height in pixels, which is easily calculated.

The full height of the bar chart would be the difference
between the bottom margin and the top margin of the chart.
These are known at the time the panel is painted. Thus, the
following ratio is the correct one for determining each bar’s
height:

BarHeight / ChartHeight = BarValue / MaxBarValue

For example, consider the following scenario. Assume
the full height of the chart is 400 pixels, and that the numeric
array contains the following five values {25, 50, 30, 40, 10}.
In this case, the max value in the array is 50. So, the pixel
heights of the corresponding bars are {200, 400, 240, 320,
80}.

At this point, the trick is to set the bar’s y-position to be
the lowest margin y position minus the bar’s height.
Oftentimes, the student makes the mistake of setting the y-
position to be at the top of the chart, so that the bars, while
being the correct height, will appear “upside down” in the
chart. Once the student corrects this mistake, the task of
drawing the bar chart is complete.

In summary, calculating bar heights and positions
involve the following:

1) Determining the largest value

2) Establishing each bar’s pixel height, compared to
the full height of the chart, to be equal to the ratio
of that bar’s value to the max value of all bars.

3) Establishing each bar’s y-position, by subtracting
the bar’s height from the bottom margin position
of the chart.

4.3 Bar Selection and Listener Notification

As mentioned earlier, the major internal data elements of the
BarChartPanel are three parallel arrays: (1) an array of
Strings for the bar labels, (2) an array of doubles for the bar
values, and (3) an array of Rectangle objects to represent the
bars positions and sizes. In addition, the BarChartPanel
implements Java’s MouseListener interface (found in the
java.awt.event package), and therefore overrides the
mouseClicked method. The mouseClicked method takes a
MouseEvent as a parameter, and this MouseEvent includes
information about the x- and y- position of the mouse within
the BarChartPanel when it was clicked.

The Rectangle class has a useful method called
“contains”. If you pass an x-value and a y-value to that
method, it returns a Boolean result indicating whether the
Rectangle contains that point. So, in the mouseClicked()
method, the student can write a loop that goes through the

array of Rectangles, calling each Rectangle object’s
contains() method. As soon as it finds the Rectangle
containing the point of the mouse click, it can then send the
index value of the array to each of its BarChartListeners.
Thus, the student’s programming task here is to use a nested
loop; the outer loop processes through the Rectangle array,
and when the proper Rectangle is found, the inner loop
processes through the BarChartListener array.

5. PROGRAMMING TASKS FOR UTILIZING THE
BAR CHART COMPONENT

Once students have developed their BarChartPanel classes,
they can begin to use it in subsequent programming
assignments. At this point, the BarChartPanel becomes a
useful pedagogical tool for teaching about data visualization.
In particular, programming projects can make use of JDBC
for database connectivity, and incorporate SQL aggregate
queries to produce result sets that can be mapped into the
BarChartPanel. In order to do this, an application would need
to perform the following tasks:

1) Invoke the JDBC DriverManager class’s
getConnection method to establish a Connection to
the data source of choice.

2) Viathe Connection, obtain a Statement object.

3) Invoke the Statement object’s executeQuery
method, passing it a String with the appropriate
aggregate SQL query (averages, sums, counts,
etc.). This query should include a GROUP BY
clause.

4) Scroll through the ResultSet obtained from the
executeQuery method, assigning each group into a
String array and each group’s statistic into a
double array.

5) Instantiate a BarChartPanel, and add it as a
component to the desired location in the GUI
(typically it will be added to a JFrame, JDialog,
JApplet, or JPanel).

6) Call the BarChartPanel object’s
setLabelsAndValues method, passing the
associated data arrays as arguments. This will
cause the BarChartPanel’s bars and labels to
become visible in the GUI.

7) Implement the BarChartListener interface in the
application, and override its barChanged method to
perform the desired operations that will occur
when the user clicks a bar. If bars correspond with
aggregate queries, a typical operation to perform
when a bar is clicked is another SQL statement
focusing on the group that the bar represents.

The Employee Database application described in Section
3 and shown in Figure 2 involves all of these steps. Figure 4
shows the code used by this application for setting up and
displaying the bars in the BarChartPanel. Note: this
assignment makes use of class called DbSource that students
created in a previous assignment for simplifying the process
of connecting to and querying databases. The application
puts the BarChartPanel, referenced via a variable called bcp,
into a JFrame object, which pops up, as shown in Figure 2.

366

Journal of Information Systems Education, Vol. 21(4)

public void showStatz(5tring command) {
String query = "";

I

3+ -1 —_—
il - ELE

N T T

Ly = L LR

m
fu
m
m

. TE R

[81]

-

Ba
N

L L i Wil] —

if (command.equals ("Emploveess per Department™)) {

=N y + A + + . £ | + + | m
query = "select departmentname, count(®) from departments d, +
n | + 1 = A A + 3 W
employees e where e,departmentid = d.departmentid " +
| [——— b Aararrmantrnamal s
group by departmentnam =
Voelse |
=N y + = + vt | £ E + n
gquery = "select projectname, count(®) from projects p, +
Aamm] miragrmrraart a Thara & . g, R Sp—— +
employeeproject e where e.projectid = p.projectid
n T - + n
group by projectname";
~onnect to data source and execute the quer

DbSource dbsStats = new DbSource ("empdb", true);
if (dbsStats.processQuery(guery, false)) {
String labels[] = new String[l00]:
double wvalueszs[] = new double[l00]:
int count = 0;

= e mriTn e
' = o

while (dbsStats.nextRecord()) {
labels[count] = dbsStats.getField(l):
values[count] = Double.parseDouble (dbsStats.getField(2)):
count++;

}

bocp.setValueshndLabels (values, labels, count);
barchartFrame,.setTitle (command) ;
barchartFrame.setVisible (true);

Figure 4: Code for populating data arrays and displaying the BarChartPanel.

The event-handler method in the Employee application is name of the event-handler method of the BarChartListener
shown in figure 5. This method implements the drill-down interface, and barNbr is the index of the bar that was clicked.
operations that enable display of the specific employees The method call to getBarLabel returns the string of the label
involved in a selected department or project, based on for the clicked bar, and this is used in the query to obtain the
clicking a bar in the chart. Recall that barChanged is the details of the group from the database that the bar represents.

367

Journal of Information Systems Education, Vol. 21(4)

public wvoid barChanged(int barMbr) {
bop.repaint () ;

String title = barchartFrame.getTitle():

String meszage -

LU
r

String guery

message

guery = geleCt Ilrstname - +~ lastname +
"from employees e, departments d where " +
M Apmartmenticd =
bcp.getBarLabel (barNbr) + "' ord

else {

me=2sage = "Employees wWoOr

query = "select firstname + + lastname " +
"from employees e, employeeproject ep, projects p here ™ +
Te.employeeid = ep.employeeid and " +
"ep.projectid=p.projectid and jectname = '™ +
bcp.getBarLabel (barNbr) + "' order by lastname, firstname";

CbhSource dbsDetails
if (dbsDetails.proceszsQuery(guery,false)){
while (dbsDetails.nextBecord()){
message += "'\n" + dbsDetails.getField(l);

new DbSource ("empdb™, true) ;

JoptionPane. shovMessageDialog(null, message)

Figure 5: Code for performing drill-down query when a bar is clicked.

Therefore, this barChanged method causes the names of all
employees to be displayed in a message dialog when a bar is
clicked, as shown in the screenshot of figure 2.

6.CONCLUSION

The BarChartPanel component and its use in Java
applications provide many pedagogical benefits for
programming students. By building a graphical component
students learn about elements of graphical programming,
including geometric analysis and color control. By coding
the component to generate events, students learn how to
manage listener registration and notification, thereby
building on their understanding of object-oriented principles
such as inheritance and polymorphism. By using this
component, students are able to gain an understanding of the

mapping from aggregate SQL queries to data visualizations,
as well as getting practical experience with drill-down
capabilities that enable applications to go from summary
(aggregate) information to more specific details at the click
of a button. | have used the BarChartPanel assignment for
several years, and find it to be an invaluable element of my
advanced programming course.

Although no formal study has been conducted regarding
student reactions to this assignment, anecdotal student
responses have been favorable. They generally find the skills
gained in terms of graphical programming and low-level
event-handling to be useful, and they make extensive use of
their completed bar chart component in their group projects.

The BarChartPanel assignment, source code, and
documentation, and the Employee application assignment,
source code, and documentation are available as Teaching

368

Journal of Information Systems Education, Vol. 21(4)

Notes accompanying this Teaching Case. In addition, class
notes and sample code relevant for teaching the skills
required of BarChartPanel construction and use are also
provided.(see teaching notes @ http://jise.org/)

7. REFERENCES

Cunningham C, Liu Y, Tadepalli P, and Fu M [2003],
Component Software: A New Software Engineering
Course, Journal of Computing Science in Colleges, 18:6,
pp10-21.

Howe E, Thornton M, and Weide B [2004], Components-
First Approaches to CS1/CS2: Principles and Practice,
SICGCSE ’04 Proceedings, March 3-7, 2004, Norfolk,
VA, pp291-295.

Java Platform Standard Edition 6 APl Specification.
http://java.sun.com/javase/6/docs/api/javax/swing/package
-summary.html.

Liang, Y.D. Introduction to Java Programming:
Comprehensive Version. 7" Edition. © 2009. Pearson
Education, Inc.

Microsoft .NET Framework Class Library.
http://msdn.microsoft.com/en-
us/library/ms229335(v=VS.90).aspx

Mitri, Michel. [2008] “A Software Development Capstone
Course and Project for CIS Majors”. Journal of Computer
Information Systems. Vol 48 Nbr 3.

Ratchivadran, T. and Rothenberger, M. [2003], Software
Reuse Strategies and Component Markets,
Communications of the ACM, 46:8, pp109-114.

Wolz , U. and Koffman, E. simplelO: a Java package for
novice interactive and graphics programming, ACM
SIGCSE Bulletin, v.31 n.3, p.212, Sept. 1999

Author Biography

Michel Mitri is a professor of computer information systems
at James Madison University in
Harrisonburg, Virginia, where he
has taught since 2001. He holds a
PhD in computer science from
Michigan State University. His
primary teaching focus includes
software development, business
intelligence, web development, and
database design. His research
interests involve applying artificial

: = intelligence and decision support
technologies to business and educational domains.

369

Copyright of Journal of Information Systems Education is the property of Journal of Information Systems
Education and its content may not be copied or emailed to multiple sites or posted to alistserv without the
copyright holder's express written permission. However, users may print, download, or email articles for
individual use.

